8.6 Applications of Derivative

Functions: f, g, y

Position of an object: s

Velocity: v

Acceleration: w

Independent variable: x

Time: t

Natural number: n

- 825. Velocity and Acceleration
 s = f(t) is the position of an object relative to a fixed coordinate system at a time t,
 v = s' = f'(t) is the instantaneous velocity of the object,
 w = v' = s" = f"(t) is the instantaneous acceleration of the object.
- 826. Tangent Line $y y_0 = f'(x_0)(x x_0)$

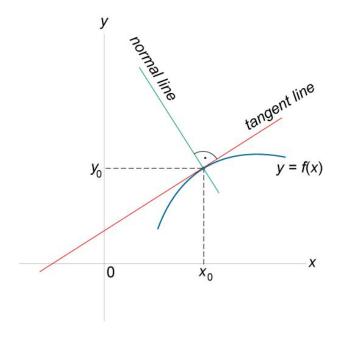


Figure 176.

827. Normal Line

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$
 (Fig 176)

828. Increasing and Decreasing Functions.

If $f'(x_0) > 0$, then f(x) is increasing at x_0 . (Fig 177, $x < x_1$,

CLICK HERE

$$\mathbf{x}_2 < \mathbf{x}$$
),

If $f'(x_0) < 0$, then f(x) is decreasing at x_0 . (Fig 177,

$$x_1 < x < x_2$$
),

If $f'(x_0)$ does not exist or is zero, then the test fails.

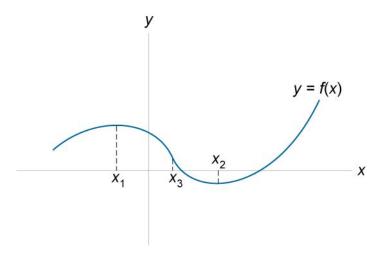


Figure 177.

829. Local extrema

A function f(x) has a local maximum at x_1 if and only if there exists some interval containing x_1 such that $f(x_1) \ge f(x)$ for all x in the interval (Fig.177).

A function f(x) has a local minimum at x_2 if and only if there exists some interval containing x_2 such that $f(x_2) \le f(x)$ for all x in the interval (Fig.177).

830. Critical Points

A critical point on f(x) occurs at x_0 if and only if either $f'(x_0)$ is zero or the derivative doesn't exist.

831. First Derivative Test for Local Extrema. If f(x) is increasing (f'(x)>0) for all x in some interval $(a,x_1]$ and f(x) is decreasing (f'(x)<0) for all x in some interval $[x_1,b)$, then f(x) has a local maximum at x_1 (Fig.177).

- **832.** If f(x) is decreasing (f'(x)<0) for all x in some interval $(a,x_2]$ and f(x) is increasing (f'(x)>0) for all x in some interval $[x_2,b]$, then f(x) has a local minimum at x_2 . (Fig.177).
- 833. Second Derivative Test for Local Extrema. If $f'(x_1)=0$ and $f''(x_1)<0$, then f(x) has a local maximum at x_1 . If $f'(x_2)=0$ and $f''(x_2)>0$, then f(x) has a local minimum at x_2 . (Fig.177)
- 834. Concavity.
 f(x) is concave upward at x₀ if and only if f'(x) is increasing at x₀ (Fig.177, x₃ < x).
 f(x) is concave downward at x₀ if and only if f'(x) is decreasing at x₀. (Fig.177, x < x₃).
- 835. Second Derivative Test for Concavity. If $f''(x_0) > 0$, then f(x) is concave upward at x_0 . If $f''(x_0) < 0$, then f(x) is concave downward at x_0 . If f''(x) does not exist or is zero, then the test fails.
- 836. Inflection Points If $f'(x_3)$ exists and f''(x) changes sign at $x = x_3$, then the point $(x_3, f(x_3))$ is an inflection point of the graph of f(x). If $f''(x_3)$ exists at the inflection point, then $f''(x_3) = 0$ (Fig.177).
- 837. L'Hopital's Rule $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ if } \lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \begin{cases} 0 \\ \infty \end{cases}.$